Chronic treatment with the opioid antagonist naltrexone favours the coupling of spinal cord μ-opioid receptors to Gαz protein subunits.

نویسندگان

  • Elsa M Valdizán
  • Alvaro Díaz
  • Fuencisla Pilar-Cuéllar
  • Aquilino Lantero
  • Ricardo Mostany
  • Ana V Villar
  • María L Laorden
  • María A Hurlé
چکیده

Sustained administration of opioid antagonists to rodents results in an enhanced antinociceptive response to agonists. We investigated the changes in spinal μ-opioid receptor signalling underlying this phenomenon. Rats received naltrexone (120 μg/h; 7 days) via osmotic minipumps. The antinociceptive response to the μ-agonist sufentanil was tested 24 h after naltrexone withdrawal. In spinal cord samples, we determined the interaction of μ-receptors with Gα proteins (agonist-stimulated [(35)S]GTPγS binding and immunoprecipitation of [(35)S]GTPγS-labelled Gα subunits) as well as μ-opioid receptor-dependent inhibition of the adenylyl cyclase (AC) activity. Chronic naltrexone treatment augmented DAMGO-stimulated [(35)S]GTPγS binding, potentiated the inhibitory effect of DAMGO on the AC/cAMP pathway, and increased the inverse agonist effect of naltrexone on cAMP accumulation. In control rats, the inhibitory effect of DAMGO on cAMP production was antagonized by pertussis toxin (PTX) whereas, after chronic naltrexone, the effect became resistant to the toxin, suggesting a coupling of μ-receptors to PTX-insensitive Gα(z) subunits. Immunoprecipitation assays confirmed the transduction switch from Gα(i/o) to Gα(z) proteins. The consequence was an enhancement of the antinociceptive response to sufentanil that, in consonance with the neurochemical data, was prevented by Gα(z)-antisense oligodeoxyribonucleotides but not by PTX. Such changes in opioid receptor signalling can be a double-edged sword. On the one hand, they may have potential applicability to the optimisation of the analgesic effects of opioid drugs for the control of pain. On the other hand, they represent an important homeostatic dysregulation of the endogenous opioid system that might account for undesirable effects in patients chronically treated with opioid antagonists. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antagonist-induced micro-opioid receptor up-regulation decreases G-protein receptor kinase-2 and dynamin-2 abundance in mouse spinal cord.

Chronic treatment with opioid receptor antagonists has been shown to increase the density of micro-, delta- and kappa-opioid receptors in cell culture and in the intact animal. Although opioid receptor antagonist-induced up-regulation is a robust phenomenon, the mechanisms responsible for the increase in receptor density remain unclear. In the present study, changes in a kinase and a GTPase tha...

متن کامل

An Experimental Study on Spinal Cord µ-Opioid and α2-Adrenergic Receptors mRNA Expression Following Stress-Induced Hyperalgesia in Male Rats

Background: Intense stress can change pain perception and induce hyperalgesia; a phenomenon called stress-induced hyperalgesia (SIH). However, the neurobiological mechanism of this effect remains unclear. The present study aimed to investigate the effect of the spinal cord µ-opioid receptors (MOR) and α2-adrenergic receptors (α2-AR) on pain sensation in rats with SIH. Methods: Eighteen Sprague-...

متن کامل

Opioid regulation of spinal cord plasticity: evidence the kappa-2 opioid receptor agonist GR89696 inhibits learning within the rat spinal cord.

Spinal cord neurons can support a simple form of instrumental learning. In this paradigm, rats completely transected at the second thoracic vertebra learn to minimize shock exposure by maintaining a hindlimb in a flexed position. Prior exposure to uncontrollable shock (shock independent of leg position) disrupts this learning. This learning deficit lasts for at least 24h and depends on the NMDA...

متن کامل

Mu-opioid receptor up-regulation and functional supersensitivity are independent of antagonist efficacy.

Chronic opioid antagonist treatment up-regulates opioid receptors and produces functional supersensitivity. Although opioid antagonists vary from neutral to inverse, the role of antagonist efficacy in mediating the chronic effects of opioid antagonists is not known. In this study, the effects of two putative inverse agonists (naltrexone, naloxone) and a putative neutral antagonist (6beta-naltre...

متن کامل

Interaction of NMDA and opioid receptors on thermal hyperalgesia and mechanical allodynia in two models of neuropathic pain

The use of multiple loose ligations of the rat sciatic nerve has been proposed as a model for the study of allodynia and hyperalgesia. This pain hypersensitivity results from both an increase in the peripheral and central sensitization. The evidence indicating that the development of neuropathic thermal hyperalgesia and mechanical allodynia requires activation of spinal cord NMDA receptors. NMD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuropharmacology

دوره 62 2  شماره 

صفحات  -

تاریخ انتشار 2012